Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3487, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664424

RESUMO

An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO2, concluding that even this moderate increase in CO2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO2 levels in our atmosphere.


Assuntos
COVID-19 , Dióxido de Carbono , SARS-CoV-2 , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , COVID-19/transmissão , COVID-19/virologia , Humanos , Concentração de Íons de Hidrogênio , Aerossóis , Umidade , Ventilação , Aerossóis e Gotículas Respiratórios/metabolismo , Aerossóis e Gotículas Respiratórios/virologia , Atmosfera/química
2.
mBio ; 15(1): e0295723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112470

RESUMO

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Animais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Aerossóis e Gotículas Respiratórios/virologia , Influenza Humana/transmissão , Humanos , Modelos Animais de Doenças , Substituição de Aminoácidos
3.
Crit Rev Biomed Eng ; 51(4): 63-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581351

RESUMO

In public health, the transmission characteristics and laws of highly infectious virus-carrying particles in the air environment have become a hot topic. The study on the spread characteristics of human virus-carrying droplets in a typical densely populated space is necessary. As such, a classroom space lattice Boltzmann method (LBM) model with a dense population is established to simulate and analyze the spreading and diffusing behavior of pathogenic droplets. The results show that the dispersion density is mainly affected by the mainstream wind direction in the area of concern, and particle aggregation is more likely to form in the area close to the wind disturbance. Due to the dense thermal plumes, the droplet movement is a clear convergence towards the upper space of the classroom. This could explain the fact that people living above confirmed cases are now more likely to be infected.


Assuntos
Aerossóis e Gotículas Respiratórios , Viroses , Humanos , Aerossóis e Gotículas Respiratórios/virologia , Viroses/transmissão , Instituições Acadêmicas
4.
Proc Natl Acad Sci U S A ; 119(32): e2204593119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930663

RESUMO

Airborne transmission occurs through droplet-mediated transport of viruses following the expulsion of an aerosol by an infected host. Transmission efficiency results from the interplay between virus survival in the drying droplet and droplet suspension time in the air, controlled by the coupling between water evaporation and droplet sedimentation. Furthermore, droplets are made of a respiratory fluid and thus, display a complex composition consisting of water and nonvolatile solutes. Here, we quantify the impact of this complex composition on the different phenomena underlying transmission. Solutes lead to a nonideal thermodynamic behavior, which sets an equilibrium droplet size that is independent of relative humidity. In contrast, solutes do not significantly hinder transport due to their low initial concentration. Realistic suspension times are computed and increase with increasing relative humidity or decreasing temperature. By uncoupling drying and suspended stages, we observe that enveloped viruses may remain infectious for hours in dried droplets. However, their infectivity decreases with increasing relative humidity or temperature after dozens of minutes. Examining expelled droplet size distributions in the light of these results leads to distinguishing two aerosols. Most droplets measure between 0 and 40 µm and compose an aerosol that remains suspended for hours. Its transmission efficiency is controlled by infectivity, which decreases with increasing humidity and temperature. Larger droplets form an aerosol that only remains suspended for minutes but corresponds to a much larger volume and thus, viral load. Its transmission efficiency is controlled by droplet suspension time, which decreases with increasing humidity and decreasing temperature.


Assuntos
Aerossóis e Gotículas Respiratórios , Viroses , Humanos , Umidade , Aerossóis e Gotículas Respiratórios/virologia , Suspensões , Viroses/transmissão , Água
7.
Indoor Air ; 32(6): e13064, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35762243

RESUMO

The exhalation of aerosols during musical performances or rehearsals posed a risk of airborne virus transmission in the COVID-19 pandemic. Previous research studied aerosol plumes by only focusing on one risk factor, either the source strength or convective transport capability. Furthermore, the source strength was characterized by the aerosol concentration and ignored the airflow rate needed for risk analysis in actual musical performances. This study characterizes aerosol plumes that account for both the source strength and convective transport capability by conducting experiments with 18 human subjects. The source strength was characterized by the source aerosol emission rate, defined as the source aerosol concentration multiplied by the source airflow rate (brass 383 particle/s, singing 408 particle/s, and woodwind 480 particle/s). The convective transport capability was characterized by the plume influence distance, defined as the sum of the horizontal jet length and horizontal instrument length (brass 0.6 m, singing 0.6 m and woodwind 0.8 m). Results indicate that woodwind instruments produced the highest risk with approximately 20% higher source aerosol emission rates and 30% higher plume influence distances compared with the average of the same risk indicators for singing and brass instruments. Interestingly, the clarinet performance produced moderate source aerosol concentrations at the instrument's bell, but had the highest source aerosol emission rates due to high source airflow rates. Flute performance generated plumes with the lowest source aerosol emission rates but the highest plume influence distances due to the highest source airflow rate. Notably, these comprehensive results show that the source airflow is a critical component of the risk of airborne disease transmission. The effectiveness of masking and bell covering in reducing aerosol transmission is due to the mitigation of both source aerosol concentrations and plume influence distances. This study also found a musician who generated approximately five times more source aerosol concentrations than those of the other musicians who played the same instrument. Despite voice and brass instruments producing measurably lower average risk, it is possible to have an individual musician produce aerosol plumes with high source strength, resulting in enhanced transmission risk; however, our sample size was too small to make generalizable conclusions regarding the broad musician population.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis e Gotículas Respiratórios , Canto , Aerossóis/análise , Poluição do Ar em Ambientes Fechados/análise , COVID-19/transmissão , Humanos , Música , Pandemias , Aerossóis e Gotículas Respiratórios/virologia
8.
Indoor Air ; 32(2): e13000, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225395

RESUMO

The ability to model the dispersion of pathogens in exhaled breath is important for characterizing transmission of the SARS-CoV-2 virus and other respiratory pathogens. A Computational Fluid Dynamics (CFD) model of droplet and aerosol emission during exhalations has been developed and for the first time compared directly with experimental data for the dispersion of respiratory and oral bacteria from ten subjects coughing, speaking, and singing in a small unventilated room. The modeled exhalations consist of a warm, humid, gaseous carrier flow and droplets represented by a discrete Lagrangian particle phase which incorporates saliva composition. The simulations and experiments both showed greater deposition of bacteria within 1 m of the subject, and the potential for a substantial number of bacteria to remain airborne, with no clear difference in airborne concentration of small bioaerosols (<10 µm diameter) between 1 and 2 m. The agreement between the model and the experimental data for bacterial deposition directly in front of the subjects was encouraging given the uncertainties in model input parameters and the inherent variability within and between subjects. The ability to predict airborne microbial dispersion and deposition gives confidence in the ability to model the consequences of an exhalation and hence the airborne transmission of respiratory pathogens such as SARS-CoV-2.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis e Gotículas Respiratórios/virologia , COVID-19/transmissão , Tosse , Humanos , SARS-CoV-2
9.
Indoor Air ; 32(2): e13002, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35225399

RESUMO

The airborne route is the dominant form of COVID-19 transmission, and therefore, the development of methodologies to quantify SARS-CoV-2 in bioaerosols is needed. We aimed to identify SARS-CoV-2 in bioaerosols by using a highly efficient sampler for the collection of 1-3 µm particles, followed by a highly sensitive detection method. 65 bioaerosol samples were collected in hospital rooms in the presence of a COVID-19 patient using a liquid impinger sampler. The SARS-CoV-2 genome was detected by ddPCR using different primer/probe sets. 44.6% of the samples resulted positive for SARS-CoV-2 following this protocol. By increasing the sampled air volume from 339 to 650 L, the percentage of positive samples went from 41% to 50%. We detected five times less positives with a commercial one-step RT-PCR assay. However, the selection of primer/probe sets might be one of the most determining factor for bioaerosol SARS-CoV-2 detection since with the ORF1ab set more than 40% of the samples were positive, compared to <10% with other sets. In conclusion, the use of a liquid impinger collector and ddPCR is an adequate strategy to detect SARS-CoV-2 in bioaerosols. However, there are still some methodological aspects that must be adjusted to optimize and standardize a definitive protocol.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis e Gotículas Respiratórios/virologia , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , Hospitais , Humanos , Reação em Cadeia da Polimerase/métodos , RNA Viral/análise
10.
Indoor Air ; 32(1): e12940, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048430

RESUMO

This article presents results from an experimental study to ascertain the transmissibility of the SARS-CoV-2 virus between rooms in a building that are connected by a central ventilation system. Respiratory droplet surrogates made of mucus and virus mimics were released in one room in a test building, and measurements of concentration levels were made in other rooms connected via the ventilation system. The paper presents experimental results for different ventilation system configurations, including ventilation rate, filtration level (up to MERV-13), and fractional outdoor air intake. The most important finding is that respiratory droplets can and do transit through central ventilation systems, suggesting a mechanism for viral transmission (and COVID-19 specifically) within the built environment in reasonable agreement with well-mixed models. We also find the deposition of small droplets (0.5-4 µm) on room walls to be negligibly small.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis e Gotículas Respiratórios/virologia , Ventilação , COVID-19/transmissão , Humanos , SARS-CoV-2
11.
Ital J Pediatr ; 48(1): 11, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042531

RESUMO

In the last year, many countries adopted a plan to contain hospital infections by Sars-Cov-2 also limiting pulmonary function tests (PFTs), exclusively to indispensable cases. All the recommendations of the major scientific societies regarding the use of PFTs, in particular spirometry, in the Covid era were formulated in the initial period of the pandemic. Currently, the new scientific knowledge about Sars-Cov-2 and the vaccination among healthcare workers, shown new insight to start doing PFTs again to help the investigation and monitoring of patients with respiratory pathology. In this article, we sum up the recommendations of major International Respiratory Societies, and we shared our experience about PFTs in a Pediatric Respiratory Disease Unit during the pandemic.


Assuntos
Agendamento de Consultas , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Aerossóis e Gotículas Respiratórios/virologia , Testes de Função Respiratória , SARS-CoV-2 , Espirometria , Adulto , COVID-19/transmissão , Criança , Humanos , Medição de Risco , Sociedades Científicas , Triagem/métodos
15.
Viruses ; 13(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34960615

RESUMO

Evidence varies as to how far aerosols spread from individuals infected with SARS-CoV-2 in hospital rooms. We investigated the presence of aerosols containing SARS-CoV-2 inside of dedicated COVID-19 patient rooms. Three National Institute for Occupational Safety and Health BC 251 two-stage cyclone samplers were set up in each patient room for a six-hour sampling period. Samplers were place on tripods, which each held two samplers at various heights above the floor. Extracted samples underwent reverse transcription polymerase chain reaction for selected gene regions of the SARS-CoV-2 virus nucleocapsid. Patient medical data were compared between participants in rooms where virus-containing aerosols were detected and those where they were not. Of 576 aerosols samples collected from 19 different rooms across 32 participants, 3% (19) were positive for SARS-CoV-2, the majority from near the head and foot of the bed. Seven of the positive samples were collected inside a single patient room. No significant differences in participant clinical characteristics were found between patients in rooms with positive and negative aerosol samples. SARS-CoV-2 viral aerosols were detected from the patient rooms of nine participants (28%). These findings provide reassurance that personal protective equipment that was recommended for this virus is appropriate given its spread in hospital rooms.


Assuntos
COVID-19/virologia , Quartos de Pacientes , Aerossóis e Gotículas Respiratórios/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/genética , Hospitais , Humanos , Pessoa de Meia-Idade , Quartos de Pacientes/estatística & dados numéricos , Fosfoproteínas/genética , RNA Viral/genética , SARS-CoV-2/genética
16.
Viruses ; 13(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960804

RESUMO

There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Exposição por Inalação/prevenção & controle , Máscaras , Distanciamento Físico , Aerossóis e Gotículas Respiratórios/virologia , Ventilação , Ar Condicionado , COVID-19/prevenção & controle , Humanos , SARS-CoV-2/isolamento & purificação
17.
PLoS One ; 16(12): e0246916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34851965

RESUMO

The COVID-19 pandemic has reintroduced questions regarding the potential risk of SARS-CoV-2 exposure amongst passengers on an aircraft. Quantifying risk with computational fluid dynamics models or contact tracing methods alone is challenging, as experimental results for inflight biological aerosols is lacking. Using fluorescent aerosol tracers and real time optical sensors, coupled with DNA-tagged tracers for aerosol deposition, we executed ground and inflight testing on Boeing 767 and 777 airframes. Analysis here represents tracer particles released from a simulated infected passenger, in multiple rows and seats, to determine the exposure risk via penetration into breathing zones in that row and numerous rows ahead and behind the index case. We present here conclusions from 118 releases of fluorescent tracer particles, with 40+ Instantaneous Biological Analyzer and Collector sensors placed in passenger breathing zones for real-time measurement of simulated virus particle penetration. Results from both airframes showed a minimum reduction of 99.54% of 1 µm aerosols from the index source to the breathing zone of a typical passenger seated directly next to the source. An average 99.97 to 99.98% reduction was measured for the breathing zones tested in the 767 and 777, respectively. Contamination of surfaces from aerosol sources was minimal, and DNA-tagged 3 µm tracer aerosol collection techniques agreed with fluorescent methodologies.


Assuntos
Aeronaves , Simulação por Computador , Corantes Fluorescentes/química , Aerossóis e Gotículas Respiratórios/química , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , DNA/química , DNA/metabolismo , Humanos , Máscaras , Microesferas , Aerossóis e Gotículas Respiratórios/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
18.
Nat Commun ; 12(1): 6812, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819516

RESUMO

Understanding the interactions between viruses and surfaces or interfaces is important, as they provide the principles underpinning the cleaning and disinfection of contaminated surfaces. Yet, the physics of such interactions is currently poorly understood. For instance, there are longstanding experimental observations suggesting that the presence of air-water interfaces can generically inactivate and kill viruses, yet the mechanism underlying this phenomenon remains unknown. Here we use theory and simulations to show that electrostatics may provide one such mechanism, and that this is very general. Thus, we predict that the electrostatic free energy of an RNA virus should increase by several thousands of kBT as the virion breaches an air-water interface. We also show that the fate of a virus approaching a generic liquid-liquid interface depends strongly on the detailed balance between interfacial and electrostatic forces, which can be tuned, for instance, by choosing different media to contact a virus-laden respiratory droplet. Tunability arises because both the electrostatic and interfacial forces scale similarly with viral size. We propose that these results can be used to design effective strategies for surface disinfection.


Assuntos
Ar , Desinfecção , Vírus de RNA/química , Aerossóis e Gotículas Respiratórios/química , Água , Interações Hidrofóbicas e Hidrofílicas , Aerossóis e Gotículas Respiratórios/virologia , Eletricidade Estática , Propriedades de Superfície
19.
Viruses ; 13(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835084

RESUMO

Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015-2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017-2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.


Assuntos
Doenças do Cão/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/veterinária , Aerossóis e Gotículas Respiratórios/virologia , Animais , Galinhas , China/epidemiologia , Cães , Patos , Feminino , Cobaias , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Filogenia
20.
Santiago de Chile; Ministerio de Salud; ago 2021.
Não convencional em Espanhol | BIGG - guias GRADE, LILACS, MINSALCHILE | ID: biblio-1517428

RESUMO

Proveer al equipo de salud odontológico recomendaciones basadas en la mejor evidencia científica disponible, orientada a minimizar el riesgo de transmisión de SARS-CoV-2 durante la atención odontológica generadora de bioaerosoles ambulatoria y de urgencia a nivel primario y secundario de salud: a) Usuarios que reciban atención odontológica generadora de bioaerosoles en toda la Red pública y privada de salud.b) Personal de salud que otorga atención odontológica con procedimientos generadores de bioaerosoles en sistema público o privado de salud. Profesionales de la salud responsables de la atención odontológica generadora de bioaerosoles en centros de salud públicos y privados en todos los niveles de atención y de establecimientos de educación superior. La elaboración de esta Guía de práctica clínica con metodología GRADE, se enmarca en un convenio de colaboración entre la Universidad de La Frontera y el Ministerio de Salud, en el contexto de la pandemia del COVID-19 y los múltiples desafíos en orientar a los equipos clínicos con la evidencia científica disponible al respecto.


Assuntos
Humanos , Assistência Odontológica/normas , COVID-19/prevenção & controle , Aerossóis e Gotículas Respiratórios/virologia , Chile , Padrões de Prática Odontológica , Instrumentos Odontológicos/normas , Equipamento de Proteção Individual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...